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Characteristic vector analysis has been used to  explain the variability in the kinetic data of 1 260 solvolysis 
reactions caused by  four variables. Two characteristic vectors V, and V2 describe the variability wi th  
sufficient accuracy. V, and V2 are linearly related to  o0 substituent constants. S,' and S2' (scalar values 
after rotation of axes) are linearly dependent o n  the solvent polarity parameter Y and the reciprocal of the 
temperature, respectively. 

An estimation of the degree of efficiency of various variables 
that simultaneously affect the reactivity of organic molecules 
has been based on the principle of additivity and indepen- 
dence.' 

The additivity approach could be misleading because of the 
existence of perturbation among the various types of inter- 
action. The logical consequence was to include cross-terms in 
the correlation analysis. Such mathematical models were de- 
signed to determine quantitatively the contribution of inter- 
acting effects in complicated physico-chemical data sets.2 

There are few examples of the application of such models to 
the study of reactions influenced by a large number of inde- 
pendent factors. However, Pivovarov et aL3 published a large 
set of kinetic data on solvolysis of P-dinitroalkylarylamines. 
The reaction takes place via an SNl  mechanism, and variation 
of the reaction rates is influenced by a change in two sub- 
stituents, temperature and polarity of the medium, and could 
be expressed by a complicated equation consisting of 16 vari- 
able terms and cross-terms of different complexity. 

The practical application of such a procedure to explain 
experimental data or for the prediction of reaction rates for 
unknown compounds is very difficult, if not impossible. 

This paper is an attempt at a more direct approach to study 
data sets that are influenced by a large number of indepen- 
dent variables. This approach is based on the characteristic 
vector analysis of a large data set for a solvolysis reaction. The 
advantage of this approach is that it is not based on a specific 
theory relating the experimental data to the variables, but on a 
general theory of the behaviour of data in similar processes. 

Design ~f the Study.-In the present paper we studied the 
processes involved in the solvolysis reactions of P-dinitroalkyl- 
amines, of general formula R'C6H4NHCH2C(N02)2C6H4R2. 
The reaction rate is affected by four types of variables: R1, R2, 
temperature, and solvent composition. The reaction mechan- 
ism is SNl and is the same for all compounds. This is con- 
trary to the recent results of Albano and Wold who studied 
various SN1 and s N 2  reactions. 

In the present study 42 compounds (objects, i )  were used. 
Six series of compounds for reaction in which R' = p-Me (l), 
H (2), p-Br (3), rn-Br (4), p-C02Me (3, and rn-NO2 (6) were 
synthesized, each having seven members with various substitu- 
ents, R2 = p-Me, p-OMe, H, p-Br, rn-C1, nz-N02, and p-NO2. 
The reaction rate for each object was measured under 30 
different sets of conditions (variables, m). Reactions at five 
different temperatures, 10, 15, 25,  35,  and 55 "C, were carried 
out in six different media containing 0, 30, 50, 70, 80, and 
100% v/v methanol. 

All the kinetic data (1 260 values) have been arranged in a 

f Presented at  a Conference on Correlation Analysis in Organic 
Chemistry, Hull, 1982. 

complete experimental data matrix of format 42 x 30. In each 
row, the kinetic data were arranged for 42 combinations of R1 
and R2 (objects) under constant conditions (variables), i.e., 
temperature and medium. In each column the kinetic data 
were arranged for one compound at 30 combinations of 
variables. The schematic arrangement is presented in the 
Scheme. 

According to the specificity of characteristic vector analysis, 
by selecting processes of known types it is possible to use a 
mathematical model for : (i) classification of objects as having 
or not having data consistent with the model; (ii) classification 
of variables; and (iii) classification of processes. 

We will deal with points (i) and (ii) only. 

Mathematical Description of Characteristic Vector Analysis. 
-Characteristic vector analysis (c.v.a.) has been used in this 
laboratory for various purposes and has been described 
previou~ly .~*~ A brief description only will be given here. 
Reaction rates, log k for i = 1,2. . . n objects and rn = 
1,2 . . . k variables, form a data matrix log ki,m. The experi- 
mental data matrix could be approximated by the c.v.a. equa- 

tion (l), where characteristic vectors V are specific to the 
variations of objects i and S describes their magnitudes which 
must be added to the mean data vector, log E, in order to 
reconstitute the experimental data set. 

The number of characteristic vectors will be equal to or less 
than n and in general is much less than n. The importance of 
the particular vector is measured by the percentage of the total 
variability explained by this vector, %TV, and by the residual 
variance of the difference between experimental and recon- 
stituted data, WEz. The calculation is performed until %TV = 
100 or just using the declared number of characteristic vectors. 

Results and Discussion 
The experimental data matrix log k m , i  can be approximated 
using the first characteristic vector V1,[  with the total vari- 
ability of 97.1 8%. The application of the second characteristic 
vector will improve the %TV to 99.25%. 

The variance of unexplained residual Ei,,,, after application 
of the first and second characteristic vectors calculated for all 
objects and variables is 0.001--0.035 and <0.01, respectively. 
Thus the standard deviation of reconstituted log k is accept- 
able when both characteristic vectors are used to explain the 
variability among all kinetic data, equation (2). VI,*, V2,f ,  and 

log E m , l  are the 42 set of numbers reported in Table 1. In the 
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n 

I 55 

Objects ( i  =1,2 .......... 4 2 )  

Series 1 (R’ =p-Me) Series 6 (R1=rn-NOz) 
L A 

f \ t \ 

p-Me, p-OMe,H, p-Br, rn- CL, m-NOz, p-NOz . . . . . . .  p-Me . . . . . . . . . . . . . . . .  ..p-N02 

Scberne. 

Table 1. Values of Vl, V2, and log k 

Substituent Calculated , 
Series R1 values p-Me 

Vl 6.4714 
1 p-Me v2 1.7690 

Vl 6.4733 
2 H  v 2  1.1355 

logk -1.8170 

log k -2.2992 
VI 

3 p-Br v2 
log k 

Vl 
4 m-Br VZ 

log k 
Vl 

5 p-C02Me v 2  
log k 

6.4741 
0.2696 

6.4754 
- 2.9571 

- 0.3239 
- 3.4087 

6.4783 
- 1.2361 
-4.1021 

Vl 6.4787 
6 m-NO2 VZ - 1.51 19 

logk -4.3122 

p-OMe 
6.3340 
1.7018 

6.3516 
1.0927 

6.3750 
0.2590 

-2.9101 
6.3896 

- 1.7740 

- 2.2549 

-0.3114 
- 3.3601 

6.4153 
- 1.1902 
- 4.0523 

6.4175 
- 1.4581 
- 4.2609 

H 
5.7885 
1.4369 

5.8662 
0.9206 

- 2.0771 
5.9734 
0.2183 

- 2.7244 
6.0473 

- 1.6021 

- 0.2625 
-3.1677 

6.1644 
- 1.0039 
-3.8517 

6.1981 
- 1.2269 
- 4.0583 

p-Br 
4.6014 
0.8567 

4.8163 
0.5522 

5.1079 
0.1296 

5.3098 

- 1.2302 

- 1.6912 

- 2.3208 

-0.1564 
- 2.7522 

5.6217 
- 0.5921 
- 3.4196 

5.7322 
- 0.8098 
- 3.6273 

m-C1 
4.1016 
0.6127 

4.3707 
0.3942 

4.7423 
0.0982 

- 2.1499 
4.9964 

- 0.1 1 14 
- 2.5763 

- 1.0724 

- 1.5282 

5.3873 
- 0.4293 
- 3.2334 

5.5046 
- 0.5267 
- 3.4321 

m-NO, 
2.6006 

-0.1 157 
-0.6007 

3.0375 
- 0.0757 
- 1.0389 

3.6424 
-0.0171 
- 1.6381 

4.0582 
0.0229 

- 2.0487 
4.6902 
0.1041 

- 2.6837 
4.8898 
0.1030 

-2.8731 

Subs t i tuen t R2 

P-NO2 
2.0479 

- 0.3966 
- 0.4297 

2.5532 
- 0.2472 
- 0.8605 

3.2437 
- 0.0569 
- 1.4517 

3.7168 
0.0724 

- 1 .a572 
4.4439 
0.2691 

-2.4814 
4.6713 
0.3434 

- 2.6685 

first line values for seven R2 substituents are reported, sub- 
stituent R1 being held constant (series 1). The other lines 
contain data for series 2-6. The linear regression between V1,[ 
for series 1-6 yields a correlation coefficient of r >0.999, the 
data for series 2 being treated as the reference (R1 = H). The 
same holds for V2,[.  In addition Vl,i linearly relates to o0 
substituent constants (Figure 1) with a very high correlation 
coefficient. V2,[ behaves in a similar way; however, the para- 
meters of the linear equations are different. There is no doubt 
that both vectors reflect the action of substituents R1 and R2 on 
reactivity . 

The explanation of S m , l  and S m . 2  values is more complicated. 
The plot of S2 versus S1 presented in Figure 2(a) indicates a 
complex situation. The points form straight lines. Six lines 
represent the data for different solvent composition (negative I 1 1 I I I 

i 
4 -  

3 -  

2 -  

slope) and the other five lines represent the data for different -0.2 0 0.2 0.4 0.6 0.8 
temperatures (positive slope). However, the distribution of the d0 
data is asymmetrical. For example, Sz values for 100% 
methanol overlap with the S 2  values for 80 and 70% methanol. 
The S1 values behave in the same way. To avoid difficulties we 
rotated the Sl and Sz axis by 54”. The new plot Sm,l’ versus 

Figure 1. Values of Vl,t  for series 2 (R1 = H) versus o,, substituent 
constants of RZ 
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Figure 2. Plot of Sz uersus Sl: (a) indicates original data and (b) indicates data after rotation 

Table 2. Values of Sl and Sz for all solvent-temperature combinations 

Temperature (K) 
Calculated c ? 

Solvent values 283 288 298 308 328 
0.3758 H20 Sl -0.0106 0.0380 0.1311 0.2178 

0.3202 0.1571 MeOH, 30% S, - 0.0802 - 0.0286 0.0672 

MeOH, 50% s1 -0.1342 - 0.0823 0.01 60 0.1080 0.2752 
s2 0.1845 0.1433 0.0658 <0.0066 -0.1376 

MeOH, 70% S1 - 0.2038 -0.1504 - 0.0490 0.0459 0.2183 
s2 0.0786 0.0432 - 0.0243 - 0.0875 - 0.2022 

MeOH, 80% S I  - 0.2505 - 0.1959 - 0.0925 0.0043 0.1802 
SZ 0.0093 - 0.0250 - 0.0847 - 0.141 7 - 0.2445 

MeOH, 100% s1 - 0.3637 - 0.3067 - 0.198 1 - 0.0966 0.0878 

SZ 0.3701 0.3199 0.2259 0.1368 - 0.0245 

s2 0.2756 0.2223 0.1379 0.0571 - 0.0879 

SZ -0.1629 -0.1862 -0.2314 - 0.2732 - 0.3503 

Table 3. Parameters of regression for Sl' and Szf 

T/"C S1' = aY + b r MeOH (%I SZ' = c/T +- d r 
10 0.1879Y - 0.1295 0.9959 0 - I 121.81 1/T + 3.7404 0.9999 
15 0.1853Y - 0.1313 0.9988 30 - 1 104.21 1/T + 3.6795 0.9999 
25 0.1705 Y - 0.1208 0.9987 50 - 1 073.41 1/T + 3.5769 0.9999 
35 0.1339Y - 0.1022 0.9899 70 - 1 045.43 1/T + 3.4827 0.9999 
55 0.1317Y - 0.0926 0.9987 80 - 1 026.48 1/T + 3.4186 0.9999 

100 -982.81 1/T + 3.2713 0.9999 

Sm.2' is presented by Figure 2(b). The distribution of points 
along S1' and Szf is then symmetrical and their ordinates are 
expressed by equations (3) and (4). 

Si' = S1 cosa + s2 sina (3) 

S2' = S2 cosa - Sl sina (4) 

S,,l ' represents the effect of the solvent composition and, 
for a particular temperature, is linearly related to the polarity 
scale, Y.' At 298 K Sm,2' is constant and is -0.025. Sm,2' 

represents the effect of temperature and for a particular solvent 
composition is linearly related to the reciprocal of the temp- 
erature (Table 2). The parameters of regression are given in 
Table 3. 
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